Aspherical manifolds that cannot be triangulated
نویسندگان
چکیده
منابع مشابه
Aspherical manifolds that cannot be triangulated
Although Kirby and Siebenmann [13] showed that there are manifolds which do not admit PL structures, the possibility remained that all manifolds could be triangulated. In the late seventies Galewski and Stern [10] constructed a closed 5–manifold M 5 so that every n–manifold, with n 5, can be triangulated if and only if M 5 can be triangulated. Moreover, M 5 admits a triangulation if and only if...
متن کاملAspherical Manifolds*
This is a survey on known results and open problems about closed aspherical manifolds, i.e., connected closed manifolds whose universal coverings are contractible. Many examples come from certain kinds of non-positive curvature conditions. The property aspherical, which is a purely homotopy theoretical condition, has many striking implications about the geometry and analysis of the manifold or ...
متن کاملSurvey on Aspherical Manifolds
This is a survey on known results and open problems about closed aspherical manifolds, i.e., connected closed manifolds whose universal coverings are contractible. Many examples come from certain kinds of non-positive curvature conditions. The property aspherical, which is a purely homotopy theoretical condition, implies many striking results about the geometry and analysis of the manifold or i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2014
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2014.14.795